End lott ing the solutionplot using shooting method xlabel ylabel hold onplot
yl(i+l)=double(yl(i)+(l/6)*(k0+2•k l+2•k2+k3)); y2(i+l)=double(y2(i)+(l/6)*(10+2*11+2*12+13));
%p lott ing the solution
legend('Nume rical solution ','Exact solution' )
-<l.2
-<l.6
,.6 lJ 1.8 1.9 2
Pllblished with M ATL4B@ R2018a
\Program for RK4 for question 8.
f•@(x,yl ,y2)y2; \function (i) g-@(x,yl,y2) 8•y1 .•2; \function (ii)
x i,n•x ( l ) ; linitial x
x_max•2; \Fi nal x
k0•h f(x (i),yl(i),y2 (i));
l0•h•g (x (i),yl(i),y2(l));
l3•h•g (x (i)+h,yl(i)+k2,y2(i)+l2);
x(i+l)•x in+i•h;
\solution using value of p
x(l)•l;yl(l)•l/3;y2(1)-p; \initial conditions h•0.001; \step length
for i• l :n
k0•h*f (x (i),yl(i),y2(i));