Download as:
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Language:EN
Pages: 14

Ftan mpa mpa mpa mpatmax mpa save mpaproblem solve prob

Area of weld A = ( 10

¥ 10 -3 )( 80 ¥ 10 -3 )
w cos b

= 800¥106

m2

(a) SFs = 0

Fs – 100 sin b = 0

tw = F A w s

6

sin b

¥ 10 6 = 0.240
¥ 10 6
Fn – 100 cos b = 0

Fn = 100 cos 14.34º = 96.88 kN

A = 800 ¥ 10 -6

= 825.74 ¥ 10–6 m2

s = F n
¥
A w ¥

PROBLEM 7.23

7.23 The steel pipe AB has a 102 mm outer diameter and a 6 mm wall thickness. Knowing that arm CD is rigidly attached to the pipe, determine the principal stresses and the maximum shearing stress at point H.

I = 1 2J = 2.0927 m4

Force-couple system at center of tube in the plane containing points H and K.

y
Fx = 10 ¥ 103 N H

Mz = – (10 ¥ 103)(150 ¥ 10–3) = – 1500 N◊m

y

T = My = 2000 N◊m z H K
c = ro = 51 ¥ 10–3 m
txy = Tc J = ( 2000 51 ¥ 10 -3 )
¥ 10
H

Transverse Shear, For semicircle

A = p 2r2 y = 4 3pr

y x
H
= 27.684 ¥ 10–6 m3

V = Fx = 10 ¥ 103 N

t = (2)(6 mm) = 12 mm = 12 ¥ 10–3 m

save = 1 2(sx + sy) = 0 R = ��� s x - s y ��� 2 + t
2

smax = save + R = 35.39 ¥ 106 Pa = 35.4 MPa

smin =save – R = – 35.39 ¥ 106 Pa = – 35.4 MPa

T = My = 2000 N◊m
txy = Tc J = ( 2000 51 ¥ 10 - 3 )

4 1855

¥ 10 6

Transverse Shear:

C
H

7.25 A 1.8 kN vertical force is applied at D to a gear attached to

the solid 25 mm diameter shaft AB. Determine the principal

D
50 mm 1.8 kN

Equivalent force-couple system at center of shaft in section at point H.

V = 1.8 kN M = (1.8 ¥ 103)(0.150) = 270 N◊m

Chapter 7 829

PROBLEM 7.26

7.26 A mechanical uses a crowfoot wrench to loosen at bolt at E. Knowing that the mechanic applies a vertical 100 N force at A, determine the principal stresses and the maximum shearing stress at point Hlocated as shown on top of the 18 mm diameter shaft.

T = (100)(250) = 25000 N◊mm

sx = 82 MPa,

txy= 28 MPa

U = s x - s

y

2
R = U 2 + t 2
xy
2 = ± 100 2 - 28 2
U = ± R
- t
xy

sy = sx – 2U = 82 ± (2)(96) = – 110 MPa, 274 MPa

U = ± R 2 - t 2 = ± 50 2 - 40 2
Chapter 7 831
xy

sx = sy + 2U = 75 ± (2)(30) = 135 MPa, 15 MPa

40 MPa
35 MPa

60 MPa

7.5 through 7.8

SOLUTION

832
B b G E C
A

t

Points

Y:
O s
C:

(save , 0) = (– 50 MPa, 0)

tan b = GX CG = 35 10 = 3.500

(MPa)

qA = 1 2a = 52.97º

R = CG 2 + GX 2 = 10 2 + 35 2 = 36.4 MPa

tmax = R = 36.4 MPa

s¢ = save = – 50 MPa

48 MPa 16 MPa
7.5 through 7.8

pal planes, (b) the principal stresses.

7.9 through 7.12 For the given state of stress, determine (a) the orien-

Points:

2
s

y

sy = – 48 MPa

Y:
C:

(save, 0) = – (16 MPa, 0)

sx = 120 MPa

txy = 60 MPa

t

(MPa)

s= s x + s y
ave 2 D

834
70 MPa
R = CF 2 + FX 2 = 105 2 + 60 2

tmax = R = 120.9 MPa

s ¢ = save = 15 MPa

10 MPa
7.34

stress, (b) the maximum in-plane shearing stress,
(c) the corresponding normal stress.

qE = qB + 45º = 61.85º

R = FC 2 + FX 2 = 30 2 + 20 2

tmax = R = 36 MPa
s ¢ = save = 40 MPa

PROBLEM 7.35

50 MPa

SOLUTION

sx = 0 x +
s= s s y
ave 2

been rotated through (a) 25º clockwise, (b) 10º
counterclockwise.

SOLUTION

y sy = – 80 MPa
40 MPa
sx = 55 MPa
s= s x + s
ave 2

j = 50º – 30.65º = 19.35º

Y
t
sy¢ = save – R cos j = – 86.6 MPa C

s
(MPa)

X
20°

j

j = 30.65 + 20º = 50.65º

30.65º

sx¢ = save + R cos j = 37.2 MPa 110 MPa
sy¢ = save – R cos j = – 62.2 MPa
Solve Prob. 7.16, using Mohr’s circle.

wise.

SOLUTION

838
X t
Y

Ys

2qP = 51.84º

R = FC 2 + FX 2 = 55 2 + 70
51.84°
50°
= 89 MPa
O
C j
(a) q = 25º

MPa
j = 51.84º – 50º = 1.84º X

sx¢ = save – R cos j = – 33.9 MPa

j = 51.84º + 20º = 71.84º

sx¢ =save – R cos j = 27.2 MPa tx¢y¢ = R sin j = 84.5 MPa
sy¢ = save + R cos j = 82.7 MPa.

7.17 and 7.18 The grain of a wooden member forms an angle of

15º with the vertical. For the state of stress shown,

15° 3 MPa

s (MPa)

Y:
X
C

Y

C:

(save, 0) = (– 2.4 MPa, 0)

q = – 15º
CX = 0.6 MPa
Copyright © 2009-2023 UrgentHomework.com, All right reserved.