Download as:
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Language:EN
Pages: 14

You are viewing 1/3rd of the document.
Purchase the document to get full access instantly.

Immediately available after payment
Both online and downloadable
No strings attached

Ftan mpa mpa mpa mpatmax mpa save mpaproblem solve prob

Area of weld A = ( 10

¥ 10 -3 )( 80 ¥ 10 -3 )
w cos b

= 800¥106

m2

(a) SFs = 0

Fs – 100 sin b = 0

tw = F A w s

6

sin b

¥ 10 6 = 0.240
¥ 10 6
Fn – 100 cos b = 0

Fn = 100 cos 14.34º = 96.88 kN

A = 800 ¥ 10 -6

= 825.74 ¥ 10–6 m2

s = F n
¥
A w ¥

PROBLEM 7.23

7.23 The steel pipe AB has a 102 mm outer diameter and a 6 mm wall thickness. Knowing that arm CD is rigidly attached to the pipe, determine the principal stresses and the maximum shearing stress at point H.

I = 1 2J = 2.0927 m4

Force-couple system at center of tube in the plane containing points H and K.

y
Fx = 10 ¥ 103 N H

Mz = – (10 ¥ 103)(150 ¥ 10–3) = – 1500 N◊m

y

T = My = 2000 N◊m z H K
c = ro = 51 ¥ 10–3 m
txy = Tc J = ( 2000 51 ¥ 10 -3 )
¥ 10
H

Transverse Shear, For semicircle

A = p 2r2 y = 4 3pr

y x
H
= 27.684 ¥ 10–6 m3

V = Fx = 10 ¥ 103 N

t = (2)(6 mm) = 12 mm = 12 ¥ 10–3 m

save = 1 2(sx + sy) = 0 R = ��� s x - s y ��� 2 + t
2

smax = save + R = 35.39 ¥ 106 Pa = 35.4 MPa

smin =save – R = – 35.39 ¥ 106 Pa = – 35.4 MPa

T = My = 2000 N◊m
txy = Tc J = ( 2000 51 ¥ 10 - 3 )

4 1855

¥ 10 6

Transverse Shear:

C
H

7.25 A 1.8 kN vertical force is applied at D to a gear attached to

the solid 25 mm diameter shaft AB. Determine the principal

D
50 mm 1.8 kN

Equivalent force-couple system at center of shaft in section at point H.

V = 1.8 kN M = (1.8 ¥ 103)(0.150) = 270 N◊m

Chapter 7 829

PROBLEM 7.26

7.26 A mechanical uses a crowfoot wrench to loosen at bolt at E. Knowing that the mechanic applies a vertical 100 N force at A, determine the principal stresses and the maximum shearing stress at point Hlocated as shown on top of the 18 mm diameter shaft.

T = (100)(250) = 25000 N◊mm

sx = 82 MPa,

txy= 28 MPa

U = s x - s

y

2
R = U 2 + t 2
xy
2 = ± 100 2 - 28 2
U = ± R
- t
xy

sy = sx – 2U = 82 ± (2)(96) = – 110 MPa, 274 MPa

U = ± R 2 - t 2 = ± 50 2 - 40 2
Chapter 7 831
xy

sx = sy + 2U = 75 ± (2)(30) = 135 MPa, 15 MPa

40 MPa
35 MPa

60 MPa

7.5 through 7.8

SOLUTION

832
B b G E C
A

t

Points

Y:
O s
C:

(save , 0) = (– 50 MPa, 0)

tan b = GX CG = 35 10 = 3.500

(MPa)

qA = 1 2a = 52.97º

R = CG 2 + GX 2 = 10 2 + 35 2 = 36.4 MPa

tmax = R = 36.4 MPa

s¢ = save = – 50 MPa

48 MPa 16 MPa
7.5 through 7.8

pal planes, (b) the principal stresses.

7.9 through 7.12 For the given state of stress, determine (a) the orien-

Points:

2
s

y

sy = – 48 MPa

Y:
C:

(save, 0) = – (16 MPa, 0)

sx = 120 MPa

txy = 60 MPa

t

(MPa)

s= s x + s y
ave 2 D

834
70 MPa
R = CF 2 + FX 2 = 105 2 + 60 2

tmax = R = 120.9 MPa

s ¢ = save = 15 MPa

10 MPa
7.34

stress, (b) the maximum in-plane shearing stress,
(c) the corresponding normal stress.

qE = qB + 45º = 61.85º

R = FC 2 + FX 2 = 30 2 + 20 2

tmax = R = 36 MPa
s ¢ = save = 40 MPa

PROBLEM 7.35

50 MPa

SOLUTION

sx = 0 x +
s= s s y
ave 2

been rotated through (a) 25º clockwise, (b) 10º
counterclockwise.

SOLUTION

y sy = – 80 MPa
40 MPa
sx = 55 MPa
s= s x + s
ave 2

j = 50º – 30.65º = 19.35º

Y
t
sy¢ = save – R cos j = – 86.6 MPa C

s
(MPa)

X
20°

j

j = 30.65 + 20º = 50.65º

30.65º

sx¢ = save + R cos j = 37.2 MPa 110 MPa
sy¢ = save – R cos j = – 62.2 MPa
Solve Prob. 7.16, using Mohr’s circle.

wise.

SOLUTION

838
X t
Y

Ys

2qP = 51.84º

R = FC 2 + FX 2 = 55 2 + 70
51.84°
50°
= 89 MPa
O
C j
(a) q = 25º

MPa
j = 51.84º – 50º = 1.84º X

sx¢ = save – R cos j = – 33.9 MPa

j = 51.84º + 20º = 71.84º

sx¢ =save – R cos j = 27.2 MPa tx¢y¢ = R sin j = 84.5 MPa
sy¢ = save + R cos j = 82.7 MPa.

7.17 and 7.18 The grain of a wooden member forms an angle of

15º with the vertical. For the state of stress shown,

15° 3 MPa

s (MPa)

Y:
X
C

Y

C:

(save, 0) = (– 2.4 MPa, 0)

q = – 15º
CX = 0.6 MPa
Copyright © 2009-2023 UrgentHomework.com, All right reserved.