The normal stress each portion the rod elena pasternak slide
Handout for Students
Dr Elena Pasternak Slide 1
Dr Elena Pasternak Slide 2
1
(biaxial loading)
Dr Elena Pasternak Slide 4
Lec notes 1, sl 41,42
Dr Elena Pasternak Slide 6
ν | = | | strain | | = | 1 | = |
|
|
|
---|---|---|---|---|---|---|---|---|---|---|
strain | 1 | |||||||||
Dr Elena Pasternak |
Dr Elena Pasternak Slide 9
Volumetric strain. Dilatation
5
e=[(1+ε11)(1+ε22)(1+ε33)-1]=ε11+ε22+ε33 +o(εij)
Since strains are small, we can neglect higher order terms:
Slide 11 |
---|
Beer et al (2015)
Dr Elena Pasternak Slide 12
To work on this problem you need to revise lec notes 2 sl 5, 7-8
Dr Elena Pasternak Slide 14
Deformations Under Axial Loading
From Hooke’s Law:
|
δ | = |
|
|||||
---|---|---|---|---|---|---|---|---|
δ | = | ∑ | P i |
|
||||
|
||||||||
A i | ||||||||
Beer et al (2015) | i | |||||||
Example
Concept Application Problem 2.01 (Beer et al, 2015)
SOLUTION:
Beer et al (2015)
Apply a free-body analysis on each component to determine the
internal forceto determine internal forces
P 1=240 10 N 3
L 1 | = | L 2 | = | m | 2 | L 3 | = | −3 | m |
|
δ = |
|
||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A 1 | = | A 2 | = | 580 10 | −6 | A 3 | = | 190 10 | ||||||||
Dr Elena Pasternak | ||||||||||||||||
Knowing that the magnitude of P
is 4 kN, determine (a) the value of
Q so that the displacement at A is
zero, (b) the corresponding
displacement of B.
Beer et al (2015)
Dr Elena Pasternak Slide 20
10
Lec notes 2, sl 6
Dr Elena Pasternak Slide 22
δ = ∫L P x
0 EA x
( )Denoting by E the Young’s modulus
(modulus of elasticity) of the material
and neglecting the effect of its
weight, determine the displacement
of point A.
Beer et al (2015)
structures
Force-displacement relations
Dr Elena Pasternak Slide 26
13
When statics (equilibrium eqns) is not sufficient to
determine either the reactions or internal forces, the system is statically indeterminate.To analyse such structures we must supplement the
equilibrium equations with additional eqns pertaining to the displacements of the structure.
(equation of compatibility)
Compatibility eqn expresses the fact that the change in length of the bar must be compatible with the
conditions at the supports.Redundant reactions are replaced with unknown
loads which along with the other loads must
produce compatible deformations.
(Superposition method)
15
bar and loading shown, assuming a close fit at
both supports before the loads are applied.
Solve for the displacement at B due to the
redundant reaction at RB.
and the reaction found at RB.
Dr Elena Pasternak Slide 31
A 1=A 2=400×10−6 m 2 A 3=A 4=250×10−6 m 2
L 1=L 2=L 3=L 4=.0 150 m
i
=.1 125E
×10 9
P 1 | = | P 2 | = | − | R B | × | 10− | 6 | m |
|
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A 1 | = | 400 | × | 10− | 6 | m |
|
A 2 | = | 250 | |||||||||||||
L 1 | = | L 2 | = | .0 300 | × | 10 3 | )R B | ||||||||||||||||
= | P i | L i | = | − | (.1 95 | ||||||||||||||||||
δ | R | ∑ | |||||||||||||||||||||
A i | E i | E | |||||||||||||||||||||
i |
Find the reaction at A due to the loads and the reaction at B
Dr Elena Pasternak | ∑ | F y | = | 0 | = | R | A | − | 300 | kN | − | 600 | kN | + | 577 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323 | kN | R | A | = | 323 | ||||||||||||||||
R | A | = | |||||||||||||||||||
R B | = | 577 |
Problem 2.05
Determine the reactions at A and B
for the steel bar and loading (see
Figure), assuming that a 4.5mm
clearance exists between the bar and
the ground before the loads are
applied, E=200GPa.
5. Statically indeterminate structures
Force-displacement relations
Dr Elena Pasternak Slide 36
18
Dr Elena Pasternak Slide 37
Problem 2.39
A polystyrene rod consisting of two
cylindrical portions AB and BC is
restrained at both ends and supports
two 30-kN loads as shown. Knowing
that E=3.1GPa, determine (a) the
reactions at A and C, (b) the normal
stress in each portion of the
rod.
7. Reflection/Feedback
Reflect on your learning in ENSC3004 Solid Mechanics this week and give us feedback on your learning experience.
Dr Elena Pasternak Slide 40
20